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Scientific Inference:

The Myth and the Reality

Prologue: “Abduction”

Some years ago, after a period of transitions for both William Stephenson and
myself which had left me uncertain of his whereabouts, I was pleased to recover
a sense of his reality from the published appearance of his “Scientific Creed”
(Stephenson, 1961). My pleasure turned to delight upon discovery that his “creed”
centered upon a little-recognized but scientifically basic principle of human reason
on which I had just completed what I still think is perhaps my finest paper to date
(Rozeboom, 1961). I promptly sent Stephenson a copy of my manuscript with a
note that read in part, “I suspect that you may now entertain doubts that your
claim, ‘philosophers have been quite unable to do anything with Peirce’s ideas
about abduction’, is still altogether true.” To this he replied, “You will agree that
I had good reason to say that philosophers have done little to help us,” and went
on to express a graciously warm appreciation for my efforts in this regard.

Having since made some effort to learn just what Peirce actually said about
“abduction,” I prefer to retain a modicum of distance between this and what I find
similar to it in my own analysis of scientific inference. For Peirce, “abduction”
seems to have been a rather protean concept that most consistently emphasized
the initial creation of hypotheses regardless of their epistemic character. (Thus,
“Abduction must cover all the operations by which theories and conceptions are
engendered” Peirce, 1934, p. 414.) Even so, a strong subsidiary theme in Peirce’s
notion was, as Stephenson has nicely put it, that abduction is “inference, like
induction, but concerned with explanation, whereas induction was descriptive—
one proceeded from a sample to the whole in induction, but from the whole to
an explanation or interpretation in abduction . . . The concern is with causes, not
with the discovery of regularities” (Stephenson, 1961, p. 11). It is this mode of
reasoning-from observations to conceptions of their explanatory sources that can
most usefully be emphasized by a modern revival of the term ”abduction,” for this
is where the present gulf between scientific practice and metascientific theory gapes
most abysmally. For Peirce himself occasionally to the contrary notwithstanding,
there is a determinate logic to abduction in this sense, a logic whose primitive forms
are just as intuitively compelling as are any commonsense patterns of deduction or
statistical generalization, and whose advanced manifestations have become increas-
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ingly prominent in technical data analysis of the past few decades. Not merely
have standard textbook accounts of science failed to acknowledge and appraise
this logic, they have instead promulgated fantasies about the nature of scientific
inference which, if taken seriously in research practice, would degrade the thrust of
scientific progress into a random walk. In what follows, I shall try to make evident
that the methodological Emperor paraded in the standard textbook fable is quite
naked, but that unbeknown to his Court followers his working-class subjects have
prepared for him a wardrobe of homespun which, although still clumsily tailored,
is more than adequate to restore his comfort and dignity.

The Myth: Hypothetico-Deductivism

Let us suppose that in your professional capacity as a research scientist you have
made the considerable effort needed to determine with high confidence and preci-
sion that a certain finite set s of entities has manifested such-and-such properties
under thus-and-so circumstances. Call this observed data configurationD(s). Now
that you know that D(s) is the case, what next? Clearly you will want to pub-
lish your findings, if only to convince your grant agency that your research merits
continued support. But few journals accept raw data protocols, so to get any pro-
fessional mileage out of your information D(s) you must summarize and interpret
it. For that matter, even if you could publish D(s) undigested, a general (contra
historical) science such as psychology cares about specific dated events only in-
sofar as these reveal something about the principles that govern particular cases.
One way or another, then, your professional responsibilities regarding data D(s)
are not properly discharged until you draw some conclusions from this evidence.
It is also professionally obligatory that these conclusions be epistemically justified
(warranted, rational), not just imaginative speculations about what is logically
possible. Thus if from data D(s) you infer that C may well be the case, you
must attempt not only to communicate a thoughtfully appropriate degree of confi-
dence in C—neither more nor less than is warranted by D(s)1—but also to insure
that this degree of C -belief given D(s) is rational according to standards of sound
judgment shared with you by those persons with whom you wish to communicate.
Your problem of what to make of D(s) is thus: What are the conclusions you can
justifiably infer from D(s), and by what theory of inference can you argue that
these are rational interpretations of your data?

1It is widely recognized that it is generally appropriate for scientific conclusions to be hedged
about with cautions, qualifications, and tentativeness. But it is also important to appreciate that
underconfidence in one’s less-than-certain conclusions can be just as epistemically irrational as
an excess of assurance. For example, although the evidence is not conclusive that Thalidomide
tends to cause birth defects, or cigarette smoking lung cancer, it would be idiocy for one’s degree
of uncertainty about these causal hypotheses to be a complete lack of conviction one way or the
other.
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Inferences from data in the behavioral sciences today basically fall into two
methodological categories, (1) statistical generalizations, and (2) anything else.
Very crudely, the former consists of noting that data configuration D(s) entails
that observed population s has a certain array P1, . . . , Pn of distributional prop-
erties (e.g., that the data variables’ means, variances, and intercorrelations have
whatever values are computed for them in this sample) and from this inferring
that properties P1, . . . , Pn or reasonably close approximations thereto, are also
possessed by the larger population from which s is a more or less random sam-
ple. As every successful graduate student well knows, there now exists a large,
revered, and technically demanding literature on the theory of such generaliza-
tions. Although the foundations of this theory are much less secure than most of
its users realize, and there still exist differences of educated opinion on how the
precise credibilities of statistical conclusions should be assessed, operational dis-
agreements nowadays about the statistical interpretation of sample data become
asymptotically negligible with increasing sample size. All in all, modern statistical
theory is one of mankind’s truly remarkable intellectual achievements. Although
some of its important practical facets still remain largely intuitive (e.g., what are
the populations to which a sample’s statistics can be generalized?), this is the one
sector of scientific data interpretation that is now relatively unproblematic—which
is why statistical reasoning is virtually the only kind of inference in which graduate
science education today provides any formal training.

Unhappily, however, what scientists no less than common mortals crave to learn
about the world is seldom just the statistical parameters to which sample frequen-
cies converge. Drawing whatever conclusions we can about our data variables’ dis-
tribution in the population sampled is but prologue to the deep problems of data
interpretation. For suppose that we have observed so large a sample s of events
from class C that no practical uncertainty remains in concluding that the distri-
butional properties P1, . . . , Pn found in s also hold for C as a whole—what then?
One important further implication of course is that we can then expect properties
P1, . . . , Pn to be approximately true of any other random selection s′ of events in C
as well, where the larger is s′ the better will be the degree of approximation. But is
that all? Cannot we rationally infer anything from data configuration D(s) more
intellectually satisfying than that additional data obtained like s will be rather
like s in other respects as well? Published methodological doctrine on this has
largely polarized between two extremes. On one hand, the most vocal of empiri-
cists usually insist that observational generalities are the only knowledge to which
a genuine science can aspire—beyond that lie speculative amusements which may
rejoice the creative inner man but lay no serious claim to rational conviction. So
constrictive an outlook on the reach of human reason has never been popular even
among professional experimentalists, however, so most scientists whose theoretical
yearnings have not been totally extinguished by their graduate training gratefully
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subscribe to an alternative orthodoxy that has been the unquestioned dogma of
virtually all modern philosophers of science, namely, that we come to understand
the causes of observed events by constructing hypotheses about their underlying
sources and then testing the observable consequences of these hypotheses. Ac-
cordingly, it will conform to prevailing custom, albeit to the intense disapproval of
some empiricists, if your research report on data D(s) concludes by discussing why
the population to which you generalize your sample statistics might have these
properties.

The controversy to which I have just referred is of course an old and familiar
one, often waged under the battleflag “Science can only describe, not explain.”
Its two traditional factions have each fused strength with weakness, the weak-
ness of one corresponding to the strength of the other. The heart of the empiricist
argument is that insomuch as statistical induction is the only known inference form
whose extrapolations from hard data can attain high degrees of plausibility, de-
scriptive regularities are all a science can learn with any confidence about the world.
Alternatively, apologists for the more philosophically sophisticated “theoretic” or
“explanationist” outlook in effect contend that since the most prestigious sciences
often do develop convincing if never completely certain explanations for observed
regularities, and since hypothetico-deductive (H-D) reasoning is the only acknowl-
edged way to support theoretical/explanatory conclusions,2 H-D arguments must
be a legitimate and indeed indispensable form of scientific inference. Each of these
positions is nourished by an important epistemic reality—for the explanationist,
that we do in fact somehow manage to work out plausible explanations for ob-
served events; for the radical empircist, that no heretofore identified pattern of
ampliative inference beyond statistical induction (the H-D schema especially not
excluded) carries much conviction for tough-minded thinkers—but mistakenly sets
itself in opposition to the other through a simplistic equating of scientific inferen-
tial practice with extant philosophic reconstructions thereof. I will show later that
radical empiricism is wrong to think that we have no way to reach highly plausible
conclusions about the underlying sources of observed events. But first I want to
make overwhelmingly evident that the radical empiricist’s scorn for H-D thinking
is well merited—that the H-D model as conventionally propounded simply has no
relevance whatsoever to the logic of rational inference.

What is this “hypothetico-deductive” orientation that has so dominated mod-
ern theories of scientific inference? Review of the methodological literature reveals
a remarkable fact: Although the H-D prescription—i.e., what must be done to

2It might be wondered why analogical inference should not also be recognized here. Despite
the fact that philosophers have at times construed analogical arguments to have some rational
force, however, the use of analogy in de facto scientific practice has been almost entirely heuris-
tic, namely, as a stimulus to conception of hypotheses. Confirmation of these analogy-inspired
hypotheses is then sought along other lines.
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get an H-D argument under way—has been abundantly publicized, it is virtually
impossible to find any articulate discussion of what specific sorts of conclusions are
supposedly the epistemic pay-off of this procedure. The prescription, of course,
is that if H is some conjecture whose truth or falsity cannot be settled by direct
observation, then we are to pass judgment on H by deducing its empirical implica-
tions and testing whether these do, in fact, turn out as predicted. That is, we are
to derive an observable consequence C of H and assess H according to whether
C is the case3 But assess H how? The inference schemata that come obviously to
mind are (1) and (2) of Chart 1,

Chart 1

(1) (2) (3)

H entails C H entails C H entails both C1 and C2

C proves false C is verified C1 is verified

H is false H is confirmed C2 is confirmed

(4)

If hypothesis H is logically equivalent to the conjunction
of two or more logically independent subhypotheses H1 and H2

such that H1 alone entails C1 and H2 alone entails C2, then
the bare fact that (verification of) C1 confirms H as a whole
gives us no reason to think that C1 also confirms C2.

in which “confirmed” means an increase in credibility generally less than complete
verification. H-D enthusiasts have in fact always been quick to laud schema (1),
and although (2) is less often acknowledged publicly (probably because, unlike
(1), it has no basis in deductive logic and hence lies beyond the technical skill of
most writers to justify), schema (2) describes the standard H-D interpretation—
covert when not explicit—of a theory’s successful predictions. And to be sure,
there would be little to protest here were the main flow of H-D reasoning to be
channeled through (1) and (2) alone, for the validity of (1) is uncontroversial and

3In practice, of course, the situation tends to be a bit more complicated than this. For one, H ’s
“observable” consequences are likely to be statistical generalities whose truth or falsity is never
conclusively determined by finite sample data. Secondly, in order to deduce C from H we often
need some auxiliary assumption K, so that the hypothesis tested by C is actually the conjunction
of H and K. And thirdly, C is usually of the form “If A, then B” whereas the outcome of a test
of this is most properly expressed as “A was brought about and B did (did not) occur” and is
not entirely equivalent to the former in its bearing on H (cf. Rozeboom, 1968). These are merely
complications in the circumstances under which H-D reasoning gets attempted, however; they do
not affect the logical character of the latter or ameliorate its to-be-shown vacuity.
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it is hard to conceive of a coherent theory of inference which countenances viola-
tions of (2). (In particular, (2) is a simple theorem in the conditional probability
model of credibility relations.) Where the intuitive reasonableness of hypothetico-
deductivism begins to curdle is in one’s inclination to suppose further that this
holistic confirmation or disconfirmation of H has epistemic relevance for other
consequences of H as well.

It is easily seen and widely recognized that disproving a hypothesis H does
not generally impugn everything which follows from H (since if H is conjunctively
complex the falsity of any one of its premises suffices to make their conjunction
false as a whole).4 Yet H-D partisans have to a man overlooked that this limitation
has a mirror image on the side of confirmation. It is strongly tempting to think
that verifying a consequence of hypothesis H increases the plausibility not merely
of H itself but of its additional untested consequences as well—i.e., to assume
that schema (3) of Chart 1 is a general principle of ampliative inference that holds
for any logically consistent hypothesis H and consequence C2 not already certain
prior to verification of C1. For example, one might attempt to justify his conviction
that the sun will rise tomorrow morning by arguing that the hypothesis “The sun
rises every morning” has been overwhelmingly confirmed by the accuracy of its
implications for all previously observed mornings, whereas nothing so persuades
us to stake our real-life welfare on a theory’s still-unverified consequences (e.g., for
the design of nuclear reactors and governmental fiscal policies) as for the theory
to have triumphed at previous predictions, especially implausible ones. I think it
can safely be said that if hypothetico-deductivists did not find arguments of form
(3) convincing they would be hard pressed to find any practical value in theory
confirmation. Inference patterns (1) and (2) are what give the H-D model its aura
of philosophical respectability, but its operational, gut-level force for persons who
actually reason hypothetico-deductively is carried by pattern (3).

Yet with but a single exception that merely verbalizes the writer’s naked in-
tuition (namely, Hempel, 1945, on the “special consequence condition”; see also
Hempel, 1968, p. 275), I am aware of no argument in the vast literature on scientific
inference that explicitly makes a case for some version of (3). The simple brute
fact of the matter is that (3) is not a defensible inference pattern.5 A complex

4This is the basis of the “Duhemian argument” (much discussed in the recent philosophy-of-
science literature) that if, as is almost always the case in practice, we must make some auxiliary
assumption K in order to derive a testable consequence C from theory H, then disproof of C
refutes not H but only its conjunction with K.

5Except as a weak statistical enthymeme whose suppressed premises are (a) that hypotheses
which arise naturally in scientific practice tend to have a special character for which (3) holds,
and (b) that H is a hypothesis which has arisen naturally in scientific practice. Although the
basic objection to (3) has been long known (cf. Hempel, 1945, n.39), it is only within the last few
years that philosophers of science have begun to think seriously about its confirmation-theoretical
significance (cf. Hesse, 1970).
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hypothesis H can easily couple premises entailing C with additional assumptions
to which C is irrelevant or even disconfirmatory. It requires no particular model
of credibility relations to demonstrate this, for given any two logically compatible
propositions C1 and C2, the conjunction of C1 and C2 is a logically consistent
hypothesis that entails both C1 and C2; hence, if (3) were generically sound under
the conditions stipulated, any datum would confirm every still-uncertain propo-
sition with which it is logically compatible. It is important to appreciate that
this general failure of (3) in no way undercuts the acceptability of confirmation
principle (2); rather, it points up the latter’s epistemic triviality. For no matter
how arbitrarily or implausibly H may conjoin C with other speculations, part of
H’s initial uncertainty resides in the uncertainty of C; hence when C becomes
verified, this much of the total doubt about H is dispelled even when C warrants
no increase of confidence in whatever H proposes over and above C.

It would be of the utmost foolishness to shrug aside the point just raised as
pedantic, artificial, degenerate, unlikely, or otherwise unworthy of serious method-
ological concern. What it shows is that hypothetico-deductive exploitation of
fanciful theories can easily convert hard data into alleged support for any conjec-
ture the data do not logically contradict. It does not help the H-D traditionalist
in the slightest to counter that even if inference schema (3) may not be accept-
able for all arbitrarily constructed hypotheses, it surely holds for most theories
that arise in the natural course of scientific inquiry. Empirically, this is just not
so—working theories in scientific practice often (I would guess virtually always)
contain many assumptions which careful analysis can show to be quite gratuitous
relative to those portions of the theory that extant data genuinely support.6 This
is especially common in turbulent areas where hypotheses spew forth in sufficient
profusion to anticipate nearly all the possible outcomes of portending research, but
it results whenever undisciplined theorizing grafts imaginative speculations onto
plausible extrapolation from known phenomena. It is for precisely this reason
that tough-minded empiricists have always been so obdurately hostile to grandiose
theories and the hypothetico-deductive view of scientific inference. That verifying
some of a particular theory’s consequences often strengthens our confidence in
parts of its remainder is an ineluctable fact of human reason. But it still remains
to identify the logic by which this properly occurs, to make explicit what sorts
of internal structure confer this epistemically vital inferential cohesiveness upon a
hypothesis—and not only is the H-D model totally uninformative about this, it
does not even recognize that any such account is needed.

To make clear that a fundamental logical problem is at issue here, one that can
no more be handled within the conceptual framework of traditional hypothetico-
deductivism than a meat axe will do for heart surgery, consider the most obvious

6For elaborations on this theme, see Rozeboom, 1970.
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restriction on (3) by which one might think to resuscitate its intuitive force. The
big trouble we have found with (3) is that verifying one consequence, C1, of a hy-
pothesis H cannot be trusted to confirm another, C2, because H may arbitrarily
conjoin C2 with whatever in H is genuinely relevant to C1. Since this objection
would be irrelevant were we sure that C2 follows from the same premises in H

needed to deduce C1, all might seem well again with (3) if cases falling under
the disclaimer (4) in Chart 1 were excluded from its scope. (Note that (4) does
not deny that C1 may confirm C2 in particular cases; it merely insists that if C1

confirms C2, it does so on grounds other than H’s joint entailment of C1 and C2.)
But if principle (4) is accepted, it prevents us from ever construing verification of
one consequence of a theory as good reason, on traditional hypothetico-deductive
grounds, for increased confidence in another. For given any two different conse-
quences C1 and C2 of any hypothesis H, we can always rewrite H to have the form
presupposed by (4). Specifically, if H entails both C1 and C2 and ‘R’ abbreviates
the proposition ‘Either H or not-C1 or not-C2’, it is easily seen that H is logically
equivalent to the conjunction C1 and C2 and R, in which R is the residual of H
over and above C1 and C2, and all three premises, C1, C2, and R, in this factoring
of H are logically independent of one another.7 This construction is, of course,
an unnatural one; but it shows that no matter how tightly integrated a theory H
may appear in its initial wording, it can always be reaxiomatized so that any finite
set C1, . . . , Cn of its logically distinct consequences are formally decoupled therein,
i.e., so that the subset of H’s independent premises needed to derive Ci is entirely
disjoint from the subset needed to derive Cj , (i 6= j). Hence, if we characterize
the logical relations among a hypothesis and its consequences only in terms of
which subsets of premises entail which consequences, we will never find a basis for
thinking that a theory’s various consequences are anything more than arbitrary
conjuncts therein with little or no confirmational relevance to one another.

Lest my protests against hypothetico-deductivism here seem tainted by an ex-
cess of polemical zeal, I want to deny any intent to disparage the soft, liberal
interpretation of “hypothetico-deductive method” that advocates under this label
no more than that we should try to conceive of explanations for phenomena that
interest us and then assess the credibilities of these theories through whatever con-
siderations are epistemically relevant from tests of their empirical consequences.
My attack is directed specifically at the simplistic, unthinking presupposition of H-
D orthodoxy that the epistemically relevant relation between hypotheses and data
is mere logical entailment. This traditional view of the way in which observations
confirm the theories that predict them, despite its total inability to withstand crit-
ical examination, has thoroughly occluded our access to the problem of significant
theory confirmation, namely, to decipher what a theory must be like in order to

7Except for the degenerate cases in which C1 entails C2, C2 entails C1, or C1 and C2 jointly
entail H. In the last case, R is tautological and can be deleted.
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transmit credibility from one of its consequences to another.

To be sure, hypothetico-deductive arguments by no means cover all features
of scientific credibility which philosophers of science have expressly sought to ex-
plicate. For example, a theory’s “simplicity” has long been acknowledged as an
important, if still poorly understood, determinant of its intuitive merit, and recent
years have seen increasingly sophisticated attempts to quantify confirmation theory
within the framework of the probability calculus. But neither by deliberate intent
nor by inadvertent implication have these probes illuminated the specific logical
properties which give inferential muscle to theories that arise in serious science—
nor indeed, considering the distance of most abstract philosophy of science from
the operational realities of scientific data processing, could they reasonably be ex-
pected to do so. Just the same, a determinate logic of trans-statistical scientific
inference does in fact exist, and to a large degree it can be formalized.

The Reality: Explanatory Induction

What comes next here is importantly incomplete in at least two ways. I have
been ruthlessly destructive in my criticism of the H-D inference model for the
same reason that a gardener hoes down the weed stand on soil he intends to
cultivate: Within this clearance we can now begin domestication and controlled
evolution of those hitherto unattended species of inference which, unbeknown to
epistemic horticulturists, are the real roots of scientific knowledge. It is not to
be expected, however, that the first exploratory plantings of this stock will reveal
all its natural varieties or optimal growth conditions. That is (to abandon a
rapidly deteriorating metaphor), not only is there no reason to think that the
patterns of explanatory induction described below are exhaustive, neither can I
yet formalize all the conditions on which the intuitive force of these arguments
is dependent. The latter deficiency is the same sort of incompleteness which still
blemishes our formalizations of statistical induction, namely, that artificial albeit
true premises can be contrived from which the induction form derives grotesque
conclusions.8 I shall not speak further of this complication on this occasion, but it
should be acknowledged at the outset lest astute readers who note the possibility
of such contrivances take them to discredit the generic force of the inference forms
they counterinstance. We do not, however, consider statistical induction to be

8Thus to embarrass the abstract generality of statistical induction, let S be a random sample
from class C, and for any arbitrary property P , P ∗ is the disjunctive property of belonging either
to S or to the class of P -things. Then P

∗ has relative frequency of 1 in S (i.e., all Ss are P*s), and
generalization of this sample frequency to C as a whole yields the conclusion that all members of C
not in S have property P . The methodological distress occasioned by such constructions has been
most actively exacerbated of late by philosophers of science (cf. Goodman’s celebrated green/grue
paradox), but has not been unknown in serious science as well, notably, in the indeterminacy of
trend extrapolations.

9



generically irrational just because its plausibility in particular cases is contingent
upon these being “natural” in a sense still much in need of clarification, and neither
is it any epistemic stigma on the forms of explanatory induction that these too
require an intuitive “naturalness” restriction (cf. Rozeboom, 1961, p. 366f 57f ).
It merely shows that the whole subject of ampliative inference still contains major
mysteries, cutting across specific inference patterns, which insightful analysis has
scarcely begun to breach.

By explanatory induction I mean inference patterns that algorithmically trans-
form datum premises of an appropriate kind into conclusions that say why the
data are this way even when the inference’s intuitive strength may well approach
total conviction. The qualifier “algorithmically” is important here, for the infer-
ence forms to which I refer are vehicles of discovery as well as of justification—
not merely do their premises confer evidential support upon their conclusions, if
necessary they also bring the latter to mind in the first place. Over and above
statistical induction (which is not commonly thought to yield explanatory conclu-
sions although a case can be made to the contrary), there exists at least one broad
family of such forms that contribute massively to data processing in both technical
science and practical everyday life. I have previously called these “ontological” in-
ductions (Rozeboom, 1961, 1966b) because, by generating conceptions of entities
to which we have epistemic access only through their effects on our data variables,
they yield awareness of the world’s nonperceptual furnishings.

The formal nature of explanatory induction lies in its reworking of distinc-
tive features of restricted data regularities into empirical indices of the underlying
determinants nomically responsible for the particular character of these local reg-
ularities. The logical details of such transformations seem rather sensitive to the
specifics of their data base, but at least two major types can be distinguished, cor-
responding to whether the data patterns at issue are between-variable or within-
variable consistencies. I shall call the inferential algorithms at work in these two
cases parameter conversion and factorial decomposition, respectively.

The data patterns upon which parameter conversion operates are those dealt
with by traditional multivariate analysis, namely, where we have a set of two or
more data variables X1, . . . ,Xn which have a particular constellation of values
for each individual in a population P . (See Rozeboom, 1961, p. 340ff. 30ff. and
Rozeboom, 1966b, p. 176ff. 132ff., for details on the logical nature of “variables” in
the scientific sense of this term.) Some of these value constellations (i.e., conjunc-
tion of properties) generally occur in P more frequently than do others, and we
describe the pattern of these co-occurrences by various parameters (e.g., means,
variances, correlation coefficients) of the joint distribution of X1, . . . ,Xn in P .
Now, when a given distributional parameter takes a particular value for a given
population P , this is logically a property of P as a whole, not of the individual
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members of P . (E.g., a high correlation between Educational Level and Annual
Income may well hold in the population of all U.S. taxpayers, but cannot be mean-
ingfully ascribed to individual taxpayer John Smyth.) Yet when we observe that
different populations Pi (i = 1, 2, . . .) of a given natural kind are characterized
by different values of the same distributional parameter for the same variables,
we often find ourselves treating the value observed for this parameter in each P ,
as an estimate of where each member of Pi individually stands on an underly-
ing determinant of that individual’s position in data space (see Rozeboom, 1961,
p.362ff. 53ff.). In particular, when the parameter expresses a statistical depen-
dency, its conversion into a theoretical source of the observed contingency is often
so unhesitantly automatic that we are unaware of having made any inference at
all. (E.g., most of the “operational definitions” positivistic methodologists have
extolled as the ultimate in observational security turn out under careful inspection
to be theoretical concepts introduced in exactly this way.)

Suppose, for example, that research on invertebrate physiology has shown av-
erage lifespan in beetles to be a decreasing function of environmental temperature,
but that some species are more sensitive to this effect than are others. Specifically,
experiments in which beetles of various species are maintained in thermally sta-
bilized environments and their observed life-spans plotted for each species against
imposed temperature reveal (let us say) a family of curves such as illustrated in
Figure 1, each being of the form L = c[− ln(1−T)]−1 in which L is mean lifespan

Figure 1
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beetles maintained in thermally stabilized environments (imaginary data)

in days and T is centigrade temperature divided by 100, but with considerable
interspecies variation in the numerical value of parameter c. Now clearly the value
of this parameter—call it the “thermal sensitivity coefficient”—is a biologically
significant property of beetles, both as one of the differentia among species and
as a factor in how long a particular beetle will live in an environment of given
temperature. Yet the character of a species merely reflects the traits common to
its individual members, whereas the determinants of an individual’s biological re-
action to its environment can scarcely be anything but features of that individual’s
own constitution. To treat the thermal sensitivity coefficient in the only way that
makes good scientific sense, we must thus construe this observed class-property
as the trace of an underlying attribute, possessed by each member of the species,
which is responsible for an individual beetle’s susceptibility to heat.9 We are not
logically compelled to make this inference, for it is an inductive leap. Even so, it
is a move we habitually and unhesitantly do make. If we did not, there would be
hard empirical data we would be at a loss to understand.

The present example of parameter conversion, although make-believe, is com-
pletely typical in all significant respects (except perhaps empirical tidiness) of
research practice in areas whose objects cluster into relatively homogeneous nat-
ural classes. But even more common, especially in the behavioral sciences, are
cases wherein a series of observations on the same individual through time re-
veals some idiographically consistent response to environmental impingements of
a certain kind. For example, a distinctive relation between imposed force and
resultant deformation can be determined for a chunk of unknown substance; an
animal can be repeatedly exposed to a stimulus S to reveal how strongly the
presence/absence of S is correlated over this period in that animal’s history with
emission/nonemission of a certain response R; or we can note for a new acquain-
tance how strongly and consistently he shows rage behavior in various vexing
circumstances. In all such cases, what we observe most directly (with quantitative
precision in technical science; with impressionistic vagueness in ordinary life) is

9I have deliberately chosen this example to be perspicuous on two crucial methodological
points. In the first place, it is clear that the function relating Lifespan to Temperature, which
is the empirical property expressed by the thermal sensitivity coefficient, cannot be effectively
abstracted from Life-span and Temperature observations on a single individual, for the latter has
only one lifespan and hence establishes but one data point through which pass an infinitude of
potential Lifespan/Temperature curves. Secondly, although the value of the thermal sensitivity
coefficient for a given species can be estimated from data on a single member of that species once
the function-form common to all species is known, namely, by the computation ĉ = −L · ln(1−T)
in which L and T are Lifespan and Temperature for a single specimen, observation variable
−L · ln(1−T) cannot be identified with the underlying thermal-sensitivity factor even though by
presumption the two are highly correlated, insomuch as a property that is analytically abstracted
(in part) from Lifespan cannot be held causally responsible (in part) for it.
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some parameter of input/output covariation in a class of time-slices of the ob-
ject’s life-history; yet we interpret this parameter as assessment of a relatively
enduring property—compressibility, S-R association strength, and irascibility, re-
spectively, in the examples just given—possessed by this object at each moment
throughout this interval and by virtue of which it is disposed to react in the par-
ticular way it does to this input variable. Thus as we normally understand it,
John Smyth’s irascibility is not a property of the class of his moments in time,
but a trait he has right now, as well as five minutes ago, and yesterday at 10:28
a.m., etc., independent of his environmental circumstances at any given moment
but which, if these are vexing, causes him to react more angrily than would most
persons in that situation. Theoretical properties of the sort commonly known as
“dispositions,” “abilities,” “capacities,” or (in former days) “powers” all owe our
conceptions of them to parameter conversion, and the frequent failure of scientists
and philosophers to recognize that these are, in fact, hypothesized entities which
explain rather than analytically abstract from the data to which they are tied only
emphasizes the impelling immediacy of these inductions.

Explanatory inductions of a second main type, factorial decomposition, arise
from a structure often detectable in data whose formal character may be described
as “polyadic” in contrast to the monadic data of classical multivariate analysis.
A “monadic” variable over a population P can be formalized as a function which
maps each of its arguments in P into a “value” (typically a number) corresponding
to which property in a set of logical alternatives is true of that individual. (E.g.,
the value of the Weight-in-grams variable for any given physical object is the num-
ber of grams it weighs.) Analysis of monadic data then searches for regularities
in the joint distribution of several such variables over a common population, most
notably for the manner in which an individual’s value on one (or more) of these
variables makes a difference for his value on another. But monadic variables are
logically very much a special case—more generally, an n-adic variable over popula-
tion P maps each ordered n-tuple of arguments in P into a value demarking which
relation out of a set of n-adic alternatives holds for that n-tuple. (E.g., Degree-of-
admiration-for is a dyadic variable whose value for a pair of persons expresses how
much the first person admires the second.) An n-adic variable for which n ≥ 2
is “polyadic,” and for polyadic data there exist patterning possibilities quite un-
like those comprehended by traditional monadic analysis.10 Although such data
have undoubtedly been parsed intuitively throughout mankind’s sentient history,

10At least on the face of it. Actually, a single n-adic variable can be treated as a set of mn−1

monadic variables, where m is the number of individuals in its argument domain, by construing
all but one of its n arguments as parameters. The joint distribution of these derived variables
can then be analyzed by monadic methods; and in fact, although this approach to polyadic
data has not yet to my knowledge been explored, I suspect there may well prove to be much
methodological virtue in doing so, especially for freeing polyadic data analysis from its present
excessive dependence upon a priori model selection.
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only within the past two decades has an explicit technical methodology for this
begun to appear (although one special polyadic treatment of monadic data, linear
factor analysis, has a longer history of its own), most of it under the rather mis-
leading label of “measurement models” and still with little recognition even by its
own pioneers much less by the remainder of the scientific community of just how
profoundly this development breaks new ground in the theory of data analysis.

Factorial decomposition of an n-adic variable V consists in discovery of a
monadic mapping φ of the objects related by V into some range of (as a rule)
numbers or complexes of numbers, together with a function ψ from n-tuples
of φ-values into values of V, such that if V(x1, . . . , xn) is the empirical rela-
tion of kind V holding for any individuals x1, . . . , xn in V’s argument domain
and φxi is the number (or whatever) into which factorization function maps xi,
then V(xl, . . . , xn) = ψ(φx1, . . . , φxn). (For greater detail, see Rozeboom, 1966b,
p. 201ff. 152ff..) For example, if P(ti, tj) is the observed proportion of times
that baseball team ti beats team tj this year, it may be possible to assign each
team ti in the league a “skill” rating φti such that the comparative skills of any
two teams determine the probability of one beating the other, say by the law
P(ti, tj) = φti ÷ (φti + φtj).

11 Or if F(xi, xj) is the coefficient of attraction em-
pirically determined by torsion balance between any two electrically uncharged
chunks of matter xi and x2, each chunk x can be assigned a “mass” µxi such
that F(xixj) = µxi × µxj . Or from beam-balance data telling which aggregates
of objects outweigh which other aggregates, we can diagnose for each object a
“weight” such that whether one object-aggregate outweighs another is determined
by which aggregate has the larger sum of weights. Roughly speaking, the sort
of patterning manifest in such data is that given information about how an indi-
vidual xi is V-related to a sufficient number of other individuals in the variable’s
argument domain, we can predict xi’s V-relation to the rest, and factoring V as
the composition of functions ψ and φ could be construed merely as a descriptive
elegance that makes this pattern perspicuous. But in fact we never stop at that if
the decomposition is nontrivial.12 Instead, we find ourselves construing the values
of φ for objects x1, . . . , xn to represent underlying nonrelational properties of these
objects that are responsible for their observed V-relations according to a nomic

11This is the Bradley-Terry-Luce model (Luce, 1959) for decomposition of probabilistic domi-
nance data. In practice, of course, this and other factorial decomposition models reproduce the
empirical data only to some degree of approximation, a discrepancy the model usually attempts
to accommodate through such stochastic addenda as the difference (which for simplicity I have
not acknowledged in the present example) between probabilities and sample-frequency approxi-
mations thereto.

12Trivial decompositions reflecting nothing that counts intuitively as data patterning are al-
ways possible for polyadic data (see Rozeboom, 1966b, p. 210f. 160f.). The nature of the triv-
ial/significant dimension here still awaits clarification, but it seems to be intimately connected
with how rapidly an accumulation of relational data for a particular object xi converges upon
xi’s value of the factorization function.
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principle expressed by ψ. Differences in skill are why one baseball team tends to
beat another, and the coefficient of attraction has whatever value it does for two
objects because their masses are whatever they are.

In these sketches of parameter conversion and factorial decomposition, I have
stressed the first birthdamp emergence of the explanatory concepts these foal be-
cause that has been exactly the point of this essay—to show that some data regu-
larities wear their explanations on the sleeve of their descriptions, manifest to even
the most unimaginative onlooker (once the data pattern itself has been perceived)
without interpretive intent or controlled surge of intellect.13 But that is just the
opening event in the real-life epic of such concepts; for once born they are swept
into a turbulence of inter-phenomenon comparisons and other evolutionary re-
search pressures that either extinguish the nascent concept’s explanatory promise
or tie it to so many strands of the discipline’s “nomological network” (cf. Cronbach
& Meehl, 1955) that the particular phenomenon which introduced it is no longer
essential to its meaning and indeed may no longer be explained by it in quite the
same way as before. For, importantly unlike the theoretical entities envisioned
in speculative hypotheses, the source variables identified by parameter conversion
and factorial decomposition come tagged from the outset with distinctive opera-
tional indices whose empirical behavior in higher-order14 data regularities mirrors
in depth and detail the underlying system of explanatory mechanisms. For exam-
ple, the coefficient of attraction between two physical objects (see above) is actually
a theoretical relation found in a series of observations on the pair, whereas sub-
sequent factorial decomposition of this low level source relation into a product of
masses explains it in turn as the result of a deeper monadic source. Again, our
hypothetical thermal sensitivity coefficient might be just one of many intraspecies
test-condition/test-outcome parameters in beetles (e.g., in the regressions of vari-
ous adult features upon the concentration of certain chemicals in larval diet) which,
when intercorrelated across species and factor-analyzed, show thermal sensitivity
to be due, say, to two factors that are finally traced to a particular locus in the
species’ chromosomal map and the moisture level of the species’ preferred egg
repositories, respectively. In short, explanatory induction is a recursive process
that can build upon its own discoveries at any explanatory level to disclose what,

13Note the parenthetical qualification here, for it absolves me of the charge that my account
of explanatory induction leaves no room for the intellectual creativity that major theoretical
innovations clearly seem to require. I would argue that cognitive creativity in science lies not
primarily in soaring embroideries of speculative fancy, but in conception and detection of induc-
tively significant data patterns. Discerning interpretable features in a raw data array is no mean
intellectual/artistic feat, especially when the to-be-discovered pattern is of a kind not previously
recognized by that discipline and the data at hand give only a fragmentary approximation to the
idealized gestalt.

14“Higher-order” in the sense of a hierarchy of logical types (see Rozeboom, 1961, p. 357ff.)
wherein the parameters of relatedness within classes define the variables related within a class of
classes.
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in turn, accounts for these.

Stephenson’s own work on Q methodology (Stephenson, 1953) nicely illustrates
many of the points I have tried to make here. A single Q-sort observation con-
sists of a graded response made by (1) a particular person at (2) a given time to
(3) a specific stimulus item under (4) distinctive interpretive instructions. (E.g.,
the subject may indicate how strongly he thinks the word “lazy” characterizes
his father’s opinion of him.) At the lowest level of explanatory induction, each
such response is taken to indicate the subject’s present underlying propensity to
react a particular way to that item under those instructions, our belief in such
tendencies (not just in Q methodology but throughout all psychometric research)
being the inductive result of parameter conversion from consistencies in how a
subject’s response covaries with the stimulus variable defining the test.15 Next,
the within-subject correlation across stimulus items for responses to the same
item under two different instructional sets is a second-level empirical parameter
whose explanatory conversion inductively demarks the similarity in how this per-
son interprets those instructions. (E.g., when the subject is variously instructed
to assess how he thinks a specified other person would rate him on an array of
evaluative adjectives, such between-instructions correlations reveal how similar the
subject feels his mother’s view of him is to his father’s, how closely it resembles
his own self-concept, etc.) Finally, factor analyzing a battery of the subject’s
between-instructions correlations can indicate what, for him, are the still-deeper
determinants of between-instructions similarity.

What is especially instructive to note from this last example is the facility with
which explanatory induction can disclose layer after layer of source variables even
in data obtained from a single person. Because humanistically oriented personality
theorists have been wont to voice their enthusiasm for such idiographic material
in a garble of holistic mysticism (“idiography” has only too often deserved trans-
lation as “the writings of idiots”), it is perhaps worth a reprise to make clear that
although every individual, human or otherwise, is indeed a law—in fact a hierarchy
of laws—unto himself, this is in no way abhorrent to a “nomothetic” science which
seeks lawfulness across individuals; rather, it is chief counsel to the latter’s theo-
retical development. For as already noted, the regularities that govern a multiplex

15On first thought it may seem strange to construe a single test score as a relational parameter.
Yet it is only because we think—with good reason—that the test situation makes a difference for
the subject’s response that we conceive of his performance in that situation as a score on that
particular test. In testing practice we usually take only a single point on the test-condition/test-
outcome regression, estimated by only a single observation, as the subject’s empirically assessed
parameter for this relationship, but were it not for practical complications we would learn more by
extracting test parameters from multiple observations on the subject under systematic variation in
the test conditions (e.g., time limits, precise wording of instructions, etc.). For further discussion
of the concept of “test” and the dispositional interpretation of test scores, see Rozeboom, 1966a,
Ch. 8.
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of observations on a single individual i consist of (1) a form of relatedness shared
by i for this kind of data with others like him in specifiable respects (namely, in
whatever background conditions we have elected to hold constant in our study
of these relationships), and (2) a distinctive configuration of parametric specifics
therein which make is detailed pattern of idiographic lawfulness generally differ-
ent from that of anyone else. But between-subject differences in such personal
parameters simply define additional data variables of a higher logical type (which
is true even if we force ourselves to abstain from their natural interpretation via
parameter conversion) and so far as we know these always participate in less local
regularities across individuals, i.e., laws that hold “normatively” for all individ-
uals satisfying the relevant boundary conditions. For example, one of the oldest
normative principles in that hardest-nosed sector of all psychonomic science, learn-
ing theory, a principle believed to be true for all organisms of sufficient biological
complexity under suitable conditions of learning, is that an organisms’s strength
of a given S-R association (or Habit, or Discriminated Operant, or Valenced Ex-
pectancy, or etc., depending on one’s deeper behavior-theoretic conjectures about
the response propensity involved) is an increasing function of the reinforcement
value for that organism of stimuli which have previously followed his emission of
R in the presence of S. Yet association strengths and reinforcement values are
theoretical attributes inferred for a given organism by explanatory induction from
his local input/output patterning. Development of this example in honest detail
(which is not practical here but may be urged upon the reader as an edifying ex-
ercise) would reveal a startling degree of logical complexity (cf. Rozeboom, 1961,
p. 374 66 ) together with many more personal parameters than just the two explic-
itly cited here. But I trust that by now the point is clear enough: Although the
“idiographic/normative” distinction is worth retention for methodological classi-
fication of data structures, it has nothing to do with the essence of individuality
or the scope of uniformity in nature. Regardless of how normatively impeccable
may or may not be the system of source regularities from whose surface eddies
we skim the data of empirical science, idiographic parameters are the operational
peepholes through which we shape our vision of the machinery below.
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